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Lectures on 8.4. and 10.4.

3.4. Existence of Brownian motion. Let us construct Brownian mo-
tion W : W is a continuous process with independent increments, which
are normally distributed with Wt − Ws ∼ N(0, t − s) for s < t. The fol-
lowing construction is due to P. Lévy. We will construct Brownian mo-
tion on the interval [0, 1]. We use special partitions, so-called dyadic par-
titions πn := {k2−n+1 : k = 0, . . . , 2n−1}. In addition we assume that
we have at our disposal independent standard normal random variables
ξn,k,defined on (Ω, F, IP). We define the the sequence W n inductively. Put
W 1(t) := tξ1,1. When time point is from the set π1, then W 1(0) = 0
and W 1(1) = ξ1,1. Clearly W 1 has normally distributed increments with
W 1(t)−W 1(s) ∼ N(0, t− s) for s < t ≤ 1. Obviously the increments of W 1

are not independent. Assume now that the process W n is defined; define
the next step by W n+1(t) = W n(t) for t ∈ πn; for t = k2−n ∈ πn+1 \ πn

we put W n+1(t) = 1
2 (W n (t − 2−n) + W n (t + 2−n))+2−(n+1)/2ξn+1,k. Now

W (n+1) is defined on πn+1. Between the points t ∈ πn+1 we define the pro-
cess W (n+1) by linear interpolation. By construction, the increments have
normal distribution, and the paths of W (n+1) are continuous. Clearly

sup
t∈[0,1]

|W n+1
t − W n

t | = 2−
n+1

2 max
k:k2−n∈πn+1\πn

|ξn+1,k|.

Using the properties of normal distribution and Borel-Cantelli lemma one
can show that the telescopic series

W 1
t +

∞
∑

k=1

(

W n+1
t − W n

t

)

converges almost surely. Limit is a continuous function, because the conver-
gence is uniform in t ∈ [0, 1]; since everything is normal, the limit has also
normal increments. By checking the covariance structure of the limit one
can verify that the limit is a Brownian motion.

3.5. Stopping and localization.

3.5.1. Stopping. Let IF be a right continuous history and τ is a stopping
time.
The stopped σ- algebra is defined by

Fτ = {A ∈ A : A ∩ (τ ≤ t) ∈ Ft ∀ t ≥ 0}.

It is known that Fτ is a sigma-algebra, and if σ ≤ τ , then Fσ ⊂ Fτ . Put

Fτ+ = ∩ǫ>0Fτ+ǫ;

clearly Fτ ⊂ Fτ+, and from the right continuity of the history IF we obtain
that Fτ+ = Fτ : If A ∈ Fτ+, then A ∩ (τ + ǫ ≤ t) ∈ Ft for all t. This means
that A ∩ (τ ≤ t − ǫ) ∈ Ft for all t, and so A∩ (τ ≤ t) ∈ Ft+ǫ. This holds for
all ǫ > 0 and we get A ∈ Ft.

Theorem 3.5. Let IF be a history and τ is a IF- stopping time. Then there

exists a sequence of stopping times τn such that τn has only finite number

of values and τn ↓ τ as n → ∞.
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Proof Define τn = q2−n, when (q − 1)2−n ≤ τ < q2−n, for 1 ≤ q ≤ n2−n,

and τn = ∞, when τ > n; clearly τn ↓ τ and τ (n) is a stopping time

{τn ≤ t} = ∪q2−n≤t{τ ≤ q2−n} ∈ Ft.

�

Remark 3.2. In general it is not possible to approximate stopping times

from the left by stopping times.

Define the stopped process by Xτ : Xτ
t = Xτ∧tI{τ>0}

Let (X, IF) be a process with D- paths , τ is a stopping time and τn is an
approximating sequence. The stopped process

Xτn

t =
∑

qn≤t

Xqn∧tI{τn=qn} + XtI{τn>t}

is adapted to Ft, since Xqn∧tI{τ
(n) = qn} ∈ Ft and XtI{τn>t} ∈ Ft. Because

X is right-continuous, then Xτ
t = limn Xτn

t and hence Xτ is adapted to IF.
Let X be a process with D- paths and τ is a stopping time. Let τn be a
sequence of stopping times such that τn ↓→ τ , τn = k

2n , if k−1
2n ≤ τ < k

2n . and
it is easy to see that Xτn is measurable with respect to Fτn and Fτn ⊂ Fτ+ 1

2n
.

Because Xτ = limn Xτn we get that Xτ ∈ Fτ+ 1

2m
for all m. Hence Xτ is

measurable with respect to Fτ+ = Fτ .
In the following we need the lemma by Komatsu, which is proved in the
exercises:

Lemma 3.2. Let X be a IF-adapted integrable process with D-paths. The

process X is a martingale if and only if for every bounded stopping time τ

IEXτ = IEX0.

Proof The interesting part of the proof is exercise 10.4. problem 5. �

Theorem 3.6. Let M be a square intergable martingale and τ, σ are bounded

stopping times with σ ≤ τ . Then IE[Mτ |Fσ ]Mσ.

Proof let A ∈ Fσ and η = σIA + τIAc . Because

(η ≤ t) = ((σ ≤ t) ∩ A) ∪ ((τ ≤ t) ∩ Ac) ∈ Ft,

then η is a bounded stopping time.
Now by lemma 3.2 we have IEM0 = IEMη = IE(MσIA) + IE(Mτ IAc) and
also IEM0 = IEMτ = IE(Mτ IA) + IE(Mτ IAc). This gives that IE(MσIA) =
IE(Mτ IA) and the claim is proved. �.

3.5.2. Localization. The process (M, IF) is a local martingale, if there exists
an increasing sequence τn, τn → ∞ of stopping times such, that M τn

is a
martingale, where M τn

t = Mt∧τnI{τn>0}.
If M is in addition continuous, then we can choose the localizing sequence
τn in such a way that the stopped martingales M τn

are bounded.
If M is a local martingale and bounded, then DCT implies that it is a true
martingale.

3.6. Continuous square integrable martingales.
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3.6.1. Continuous processes with bounded variation. Let A be a continuous
function with bounded variation. If π is a partition of the interval [0, T ],
π = {tk : 0 = t0 < t1 < · · · tn = T}, then the Abel summation formula gives

(3.3) A2
T = A2

0 + 2

n
∑

k=1

Atk−1
(Atk − Atk−1

) +

n
∑

k=1

(Atk − Atk−1
)2.

Because A has bounded variation the continuity of A implies
n

∑

k=1

(Atk − Atk−1
)2 ≤ max

k
|Atk − Atk−1

|varT (A) → 0,

as π → 0. On the other hand the left hand side of (3.3) is independent of
π, and so there exists a limit

∫ T

0
AsdAs = lim

|π|→0

∑

k

Atk−1
(Atk − Atk−1

) =
1

2
(AT − A0).

Theorem 3.7. Let (M, IF) be a continuous local martingale. Then M has

bounded variation if and only if M is a constant.

Proof If M is a constant, then VT (M) = 0 for all T > 0. Hence M has
bounded variation.
Conversely, let M have a bounded variation. Without loss of generality we
can assume that M0 = 0 and we will show that the IP(Mt = 0 ∀ t ≥ 0) = 1.
Let us first assume that M∗

∞ < K and VT (M) < K for some K > 0, when
T > 0.
because M has bounded variation and continuous paths, then

M2
T = 2

∫ T

0
MsdMs.

On the other hand for the discretized sum we have

|
n

∑

k=1

Mtk−1
(Mtk − Mtk−1

)| ≤ K2

and
n

∑

k=1

IE(Mtk−1
(Mtk − Mtk−1

) =

n
∑

k=1

IE
(

IE[Mtk−1
(Mtk − Mtk−1

)|Ftk−1]
)

=

n
∑

k=1

IE
(

Mtk−1
IE[(Mtk − Mtk−1

)|Ftk−1]
)

= 0;

and so by DCT we also have

IEM2
T = 2IE

∫ T

0
MsdMs = 0.

Hence MT = 0, because M is continuous, then we have IP(Mt = 0 ∀ t ≥
0) = 1 [this is true for rational t, and by continuity for all t].
Because M is continuous, then also the mapping t 7→ Vt(M) is continuous.
For K > 0 define a stopping time τK by

τK = inf{t ≥ 0 : vart(M) > K} ∧ inf{t ≥ 0 : |Mt| > K}.
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For the stopped process M τK we have that IP(M τK

t = 0 ∀ t ≥ 0) = 1. On
the other hand τK → ∞, as K → ∞, so Mt = limK M

τK

t . The theorem is
proved. �

Prologue. We want to define stochastic integrals with repsect to a continuous
martingale M . Let us describe informally the construction of the stochastic
integral in the case the continuous martingale is Brownian motion W . Con-
sider first the integral of a process C of the form C = α1(u,v], where α ∈ Fu

and |α| ≤ 1. Then the natural definition of the integral is

Yt =

∫ t

0
CsdWs = α (Wt∧v − Wt∧u) .

It is not difficult to see that Y is a continuous martingale, and the important
isometry holds

(3.4) IE

(
∫ ∞

0
CsdWs

)2

= IE

∫ ∞

0
C2

s ds

holds:

IE

(
∫ ∞

0
CsdWs

)2

= IE
(

α (Wv − Wu)2
)

= IE
(

α2
(

W 2
v − W 2

u

))

= IE
(

α2 (v − u)
)

= IE

∫ ∞

0
C2

s ds,

where the first equality is a property of martingales and the second follows
from the fact that the process W 2

t − t is a martingale. To extend this to the
construction of stochastic integral with respect to a continuous martingale M

we will consider the Hilbert space of continuous martingales and the analog
of the property that W 2

t − t is a martingale for an arbitrary continuous
martingale M .

3.7. The space of continuous martingales M2. Let us define the space
M2(IF, IP) of IL2- bounded continuous martingales M :

• M ∈ M2 if M has continuous paths , M0 = 0 and supt IEM2
t < ∞.

If M ∈ M2, then the martingale convergence theorem implies that there
exists M∞ = limt Mt, where the convergence is in IL2 and almost surely.
Moreover, if τ is a finite stopping time, then Mτ = IE[M∞|Fτ ] and M∞ ∈
F∞, where F∞

.
= σ(∪tFt).

Let us define a norm in the space M2 by putting ||M ||2M2

.
= IEM2

∞. We get

from Doobs IL2- maximal inequality we obtain that ||M∗
∞||L2(IP) ≤ 2||M ||M2

[we will use the notation ||Y ||2 for the norm in L2; notice that the ||M ||M2

norm is a norm for stochastic process, but the ||Y ||2 is for random variables].

Theorem 3.8. The space (M2, || ||M2) is a complete space.

Proof Let Mn c-sequence in the space M2. Then the sequence of random
variables Mn

∞ is a c-sequence in the space L2(IP). But this space is complete
and there exists a random variable Y = L2(IP) − limn Mn

∞ with Y ∈ F∞.
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Let us define a square integrable martingale M by Mt = IE[Y |Ft]. Because
Y ∈ F∞, then M∞ = Y . We have that

||(Mn − M)∗∞||2 = ||Mn) − M ||M2 ≤ 2||M (n)
∞ − M∞||2 → 0.

From this we obtain that there is a subsequence nj such that

(Mnj − M)∗∞ → 0

from this we in turn get that the paths of M are almost surely continuous: M

is a uniform limit of continuous functions and hence continuous. Moreover,
M0 = 0, and so M ∈ M2. �

3.8. The angle bracket process 〈M,M〉 of a continuous martingale

M . In order to find the extension to the fact that W 2
t − t is a martingale,

we need the following definition.

Definition 3.5. The process (C, IF) is a simple predictable process, if there

exists stopping times 0 ≤ τ0 < τ1 < τ2 < · · · < τn < τn+1∞, and random

variables αk ∈ Fτk−1
, k ≥ 1, such that

(3.5) C =
∑

k

αkI(τk−1,τk].

If (X, IF) is a stochastic process and (C, IF) a simple predictable process,
then we define the stochastic integral C ◦ X of C with respect to X by

(C ◦ X)t =
∑

k

αk(Xt∧τk
− Xt∧τk−1

).

Theorem 3.9. Let (M, IF) a continuous martingale and C is a simple pre-

dictable process with |C| ≤ 1. Then (C◦M) is a continuous square integrable

martingale and

IE(C ◦ M)2t ≤ IEM2
t .

Proof The proof is obvious and the details are left for a voluntary exercise.
�

Theorem 3.10. Let (M, IF) be a continuous local martingale. Then there

exists a continuous and increasing process 〈M,M〉, 〈M,M〉0 = 0 such that

M2 − 〈M,M〉 is a local martingale.

Proof We can assume that M0 = 0.
The uniqueness follows from theorem 3.7: Indeed, if 〈U,U〉 is another in-
creasing and continuous process, 〈U,U〉0 = 0, and M2−〈U,U〉 is a local mar-
tingale. Then the process 〈U,U〉− 〈M,M〉 = M2 −〈M,M〉− (M2 −〈U,U〉)
has bounded variation and also a local martingale, and by theorem 3.7 it is
a constant.
To prove the existence of 〈M,M〉 let us first assume that M is bounded:
M∗

∞ ≤ K.
For fixed n ≥ 1 define the stopping times τn

k recursively: τn
0 = 0 and when

k ≥ 0, let us define

τn
k+1

.
= inf{t > τn

k : |Mt − Mτn
k
| = 2−n}.
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Because M is continuous, then τn
k → ∞, when k → ∞ and n is fixed. let us

define the processes

Cn
t =

∑

k

Mτn
k
I{t∈(τn

k
,τn

k+1
]} , Qn

t =
∑

k

(

Mt∧τn
k+1

− Mt∧τn
k

)2
.

As before, by Abel summation formula we obtain

(3.6) M2
t = 2(Cn ◦ M)t + Qn

t , t ≥ 0.

The integrals are continuous square integrable martingales and so Cn ◦M ∈
M2. By definition we have that |Cn

t − Mt| ≤ 2−n and we observe that for
m ≤ n we have

||(Cm ◦ M) − (Cn ◦ M)||M2 = ||(Cm − Cn) ◦ M ||M2 ≤ 2−m+1||M ||M2 .

Hence the sequence Cn ◦ M is a c-sequence in the space M2, and hence
there exists a continuous square integrable martingale N ∈ M2 such that

C2 ◦M
M2

−→ N . Hence the process 〈M,M〉
.
= M2−2N is continuous process

and from the equality (3.6) we obtain that

(Qn − 〈M,M〉)∗∞ = 2(N − Cn ◦ M)∗∞
IP
−→ 0.

Next we argue that 〈M,M〉 is continuous process. Let Λ = {τn
k : n, k ∈ IN}.

Because Qn converges to the limit 〈M,M〉 uniformly and Qn is strictly
increasing in the set Λ, so also 〈M,M〉 is strictly increasing on the set Λ.
Moreover, since the process 〈M,M〉 is continuous, then it increasing also in
the closure Λ̄ of the set Λ. Finally, let I ⊂ Λ̄c be an interval. From the
definition of the set Λ it follows that the martingale M is a constant on I,
and hence also Qn is a constant on this interval, and because 〈M,M〉 is a
uniform limit of Qn it is also constant on this interval.
Let τm be the localizing sequence of M , and let σn = inf{t ≥ 0 : |Mt| = n}.
Let us define ηn = τn ∧ σn. We have that ηn → ∞ as n → ∞. Since
the process Mηn is a bounded continuous martingale, we know by the proof
above that there is a unique process 〈Mηn ,Mηn〉. If m < n, then ηm < ηn

and from the equality (Mηn)ηm = Mηm we obtain that 〈Mηm ,Mηm〉 =
〈Mηn ,Mηn〉ηm .
Hence on the random interval [0, ηm] 〈Mηm ,Mηm〈= 〈Mηn ,Mηn〉 almost
surely. Because ηn ↑ ∞,we finally obtain that there exists

〈M,M〉 = lim
n
〈Mσn ,Mσn〉

and 〈M,M〉 is continuous, increasing, and adapted to IF. Further 〈M,M〉 =
〈Mηn ,Mηn〉 on the interval [0, ηn] and (Mηn)2−〈Mηn ,Mηn〉 is a martingale
for every n, and so M2 − 〈M,M〉 is a local martingale. �

Corollary 3.1. Let (M, IF) and (N, IF) be two continuous local martingales.

Then there is a unique IF- adapted process 〈M,N〉 such that MN − 〈M,N〉
is a local martingale.

Proof We have the polarization identity

MN =
1

4

(

(M + N)2 − (M − N)2
)

;

then by defining 〈M.N〉 = 1
4(〈M + N,M + N〉 − 〈M − N,M − N〉), we get

that the process MN − 〈M,N〉 is a local martingale. The process 〈M,N〉
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has bounded variation, since it is a difference of two increasing processes. .
Uniqueness can be proved using again 3.10. �

Remark 3.3. We know that Brownian motion satisfies:
∑

tk∈π

(Wtk − Wtk−1
)2

IP
−→ T, |π| → 0

where π = πn is a partition of the interval [0, T ] . This is true fro a contin-

uous local martingale M :
∑

tk∈π

(Mtk − Mtk−1
)2

IP
−→ 〈M,M〉T ;

in the proof of theorem 3.9 we have proved this over special random par-

titions, but one can show that this is true for deterministic partitions as

well.

4. Stochastic integrals

4.1. Stochastic integral of a simple predictable process.

History. If f ∈ C∞
0 , then stochastic integral [of the deterministic process f ]

with respect to Brownian motion W can be defined by the integration by
parts formula

∫ T

0
fsdWs = fTWT − f0W0 −

∫ T

0
Wsdfs;

this was the approach of Norbert Wiener, and for this reason such integrals,
where the integrand is a deterministic function are called Wiener integrals.
The stochastic integral with respect to Brownian motion appeared in the
work of Japanese mathematician Kyoshi It in the 1940’s, and independently
also in the works of Ukrainian mathematician Iosif Gihman at the same
time.

4.1.1. Measurability concepts. Define the following σ- algebras on the prod-
uct space Ω × IR+:

• Predictable σ- algebra P(IF) is the smallest σ- algebra, which makes
all IF adapted, left-continuous processes measurable, in other words

P(IF) = σ{X ∈ IF : X is left-continuous}.

• Optional σ- algebra O(IF) is the smallest σ- algebra, which makes
right-continuous IF-adapted processes measurable, in other words

O(IF) = σ{X ∈ IF : X is right-continuous}.

• The process X is progressively measurable, if the mapping X : Ω ×
IR+ → IR restricted to the interval [0, t] is Ft ⊗ IB[0,t]- measurable.
The progressive σ- algebra Prog(IF) is generated by the progressively
measurable processes.

Remark 4.1. One can show that

P(IF) ⊂ O(IF) ⊂ Prog(IF).
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4.2. Stochastic integral. We want to define stochastic integral of a pre-
dictable process H with respect to a continuous square integrable local mar-
tingale M when

(4.1) IE

∫ ∞

0
H2

ud〈M,M〉u < ∞;

here the integral with respect to the increasing process 〈M,M〉 is a Riemann-
Stieltjes- integral:

∫ ∞

0
Hsd〈M,M〉s = lim

|π|→0

∑

k

Htk−1

(

〈M,M〉tk − 〈M,M〉tk−1

)

and π is a partition of the interval [0,∞).
We start with the most simple case with H a left-continuous process: H =
αI(a,b], 0 ≤ a < b < ∞. In order H to be adapted to IF, we must assume
that α ∈ Fa+ = Fa. Define the stochastic integral by putting

(H ◦ M)t = α(Mt∧b − Mt∧a).

Lemma 4.1. Assume that (M, IF) is a continuous martingale with M ∈
M2. Let H = αI(a,b] and put N

.
= (H ◦ M). If α ∈ Fa and α is bounded,

then N is a continuous martingale and we have the isometry

(4.2) IEN2
∞ = IE[α2 (〈M,M〉b − 〈M,M〉a)]

and

(4.3) 〈N,N〉t =

∫ t

0
α2I(a,b](u)d〈M,M〉u.

Proof Clearly N is continuous, adapted to IF and integrable. Let us show
the martingale property of N .
If a < s < t < b, then Nt = α(Mt − Ma) and

IE[α(Mt − Ma)|Fs = αIE[(Mt − Ma)|Fs] = α(Ms − Ma) = Ns.

The rest of the cases with ab, s, t are proved similarly.
The proof of (4.2) and (4.3) is an exercise

�


